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Abstract—We describe and verify convergence properties of
our forced-based genetic algorithm (FGA) as a decentralized
topology control mechanism distributed among software agents.
FGA uses local information to guide autonomous mobile nodes
over an unknown geographical terrain to obtain a uniform node
distribution. Analyzing the convergence characteristics of FGA
is difficult due to the stochastic nature of GA-based algorithms.
Ergodic homogeneous Markov chains are used to describe the
convergence characteristics of our FGA. In addition, simulation
experiments verify the convergence of our GA-based algorithm.

Index Terms—bio-inspired algorithms;Markov chains;genetic
algorithms;MANETs;topology control.

I. INTRODUCTION

The term biologically inspired algorithm represents a family
of stochastic algorithms based on principals that are mimicked
from nature. Bio-inspired algorithms are becoming a popular
tool particularly in collobrative robotics, machine learning,
artificial intelligence (AI), and pattern recognition techniques
with direct applications in military and commercial tasks. GA
is a particular set of bio-inspired algorithms that use tech-
niques motivated by evolutionary biology such as tournament,
selection, mutation, and elitism.

A Mobile ad-hoc network (MANET) is a network formed
when wireless mobile nodes with limited communication capa-
bilities come together and dynamically create a temporary net-
work without any pre-existing network infrastructure. In many
circumstances, mobile nodes are geographically dispersed so
communication between far away mobile nodes can be es-
tablished through a multi-hop routing. However, the network
structure may rapidly and unpredictably change due to various
reasons such as loss of mobile nodes, malfunctions, or mobile
node movement. One way to maintain the network connection
in MANETs is to provide the mobile nodes with ability to
self-organize. Self-organization, known as autonomic comput-
ing, is composed of self-management, self-optimization, self-
adaptation, self-healing, and self-regulating [1]. To provide a
self-organization ability to the mobile nodes, they must be
capable of deciding their speed and movement directions.
The results from our earlier research show that GA-based
algorithms are among the better approaches to provide self-
organization capability of the mobile nodes in an unknown

geographical terrain. Using our forced-based GA (FGA) as
distributed software agents in mobile nodes protects the con-
nectivity in a MANET using local information without any
centralized controller [2], [3].

We study on the convergence of our FGA in the problem
of covering maximum area and providing a fully connected
network in a MANET with unknown terrain while only using
local neighborhood knowledge. As in any problem solving
paradigm using a stochastic algorithm, the main issue is to
find whether our algorithm provides an optimal or close to
optimal solution (GAs are stochastic in nature, they are not
guaranteed to find the exact optimal solution). We use an
ergodic homogeneous finite Markov chain (MC) to show the
convergence of our FGA. Since the population of the FGA like
all GA-based algorithms only depends on the population of
the previous generation in a probabilistic manner, MC is an
appropriate method to analyze the convergence of our FGA.

GAs are among the most popular control tools in MANETs
particularly focusing on the topology control and routing: to
overcome the battery limitation problem for routing selection
in MANETS [4], to create clusters in MANETs [5], [6], and
the network parameter selections [7]. In our FGA approach,
there are no cluster heads in a MANET. Each mobile node
runs the same software agent to decide its next movement.
Our approach results in immunity from losing vital assets since
there is no difference between the mobile nodes.

Schema theory [8] and Markov chains are widely used to
provide a formal structure for analyzing GAs. For example, a
modified elitist strategy is used to generate the current popu-
lation from the reserved highest fitness valued individual and
the rest are from the previous generation in [9]. [10] explains
various Markov chain Monte Carlo methods, including the
Gibb’s sampler and the Metropolis sampler. [11] proposes
an algorithm for control of autonomous swarms using the
Gibbs sampler simulated annealing process. [12] discusses
fundamental properties of finite Markov chain including graph
theoretic considerations for transient and non-transient, recur-
rent and non-recurrent cases.

Our paper is organized as follows. Section II presents details
about our FGA. The finite Markov chain model of our FGA
and theoretical details of convergence analysis for the ergodic
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homogeneous Markov chain are explained in Section III.
Convergence analysis of our FGA is provided in Section IV.

II. OUR DISTRIBUTED FORCED-BASED GENETIC
ALGORITHM

A mobile node gathers information about its neighboring
nodes’ speed, direction, and location. Then it runs our GA to
optimize its speed and direction [2], [3]. In our earlier works
we introduced the FGA implementation [13] that is inspired
by molecular forced-based distributions found in physics [14].
Each mobile node in the MANET is applied a force by its
near neighbors (i.e., the neighbors are the nodes located within
the communication range). The total force sums up to zero at
equilibrium. The summed force is used as a fitness by FGA
to calculate the next speed and location of the node such that
the summed force on the mobile node is minimized. We can
calculate the total force applied to a mobile node n as follows:

F (n) =
k∑
i=0

k∑
j=0

N · (Rcom− | ((x− xi) + (y − yj)) |) (1)

where k is the total number of neighbors, (x, y) is the current
coordinate value for node n, (xi, yj) is the location of a
neighbor node, and N is the expected number of neighbors
to maximize the coverage [2].

Our FGA aims to provide each node with : (i) a near-optimal
number of neighbors, (ii) self-spreading capability, (iii) a
fully connected network, and (iv) minimizes the intersection
between mobile nodes’ communication coverage.

III. FINITE MARKOV CHAINS

A discrete stochastic system can be characterized by a set ϑ
of states and transitions between these states. The transitions
occur at each discrete time beat so that the state of the system
at time t is a value Xtεϑ, t = (0, 1, 2, 3, · · · ). If the transition
randomly occurs based on a Markov kernel, this discrete
stochastic system is named a discrete stochastic process. A
Markov chain is memoryless if the probability of a transition
between states does not depend on the previous states.

P (Xt+1 = j|Xt = i,Xt−1 = νt−1, · · · , X0 = ν0)

= P (Xt+1 = j|Xt = i),∀i, j, ν0, · · · , νt−1εϑ (2)

A finite Markov chain is defined as a memoryless discrete
stochastic process with a finite number of states.

A simplified behavior of a node running our FGA can be
characterized by a finite Markov chain using the node’s speed
(mobile or immobile), fitness (good or bad), and direction (up,
up-right, down-right, down, down-left, or up-left based on the
hexagonal lattice) as seen in Fig. 1. The fitness value for each
mobile node is calculated by using Eq. 1. Various fitness values
of each mobile node are merged into two distinct values as
either good or bad (shown as 1 or 0 in Fig. 1, respectively). The
number of neighbors is another variable used in our simplified
Markov model state. For d(i) is the number of neighbors for a
mobile agent i and N̄ is the ideal number of neighbors [2] to

Fig. 1. A Simplified Markov chain model for our FGA (each state is connected
to each of the states in dotted lines, which are not shown for simplicity)

maximize the area coverage. The state where N̄ − 1 ≤ d(i) ≤
N̄ + 1 is modeled as ideal in the Markov chain; otherwise, it
is denoted as non-ideal.

The simplified Markov chain model of our FGA has 15 states
as seen in Fig. 1. If a mobile agent is moving on one of the six
directions, its state must be at the one of the 12 states based
on its number of neighbors and fitness value: six directions
with the ideal number of neighbors and the fitness value of
0, and six directions with non-ideal number of neighbors and
fitness value of 0. Speed is inherently covered by including
direction into the state information.The remaining three states
are (stop, non, 0) state where the node is immobile due to the
non-ideal number of neighbors and zero fitness, (stop, ideal,
0) state where the mobile node is immobile, the fitness is 0 in
spite of the ideal number of neighbors, and (stop, ideal, 1) state
where the mobile node does not move because of having ideal
number of neighbors with fitness 1. The state (stop, ideal, 1) is
the desired (final) state in our simplified Markov chain model.
If a mobile node reaches this state, it has the desired number of
neighbors at the correct locations and stops moving (perhaps
until another node comes and disrupts its equilibrium).

A transition (stochastic) matrix is used to specify the
probabilities that the mobile agents move from one state to
another in unit time (i.e., the behavior of a Markov chain
depends on the values in the transition matrix). Due to the
stochastic nature of the GAs, the probability values of the tran-
sition matrix cannot be calculated analytically. These values
must be determined experimentally by using our simulation
software [2], [3]. We set up a set of experiments and collect
data concerning the observed state of the nodes at each time
unit. When our FGA decides the mobile node’s next speed
and direction using the neighborhood information, the mobile



node moves from one state to another in our simplified Markov
chain shown in Fig. 1. Performing more experiments increases
the accuracy of the probability values in the transition matrix
since noise in the data is eliminated. After running enough
experiments, the transition matrix can be formed using the data
showing the observed state of each node at each time unit. The
resulting transition matrix from the simulation experiments is
a right transition matrix with nonnegative elements and entries
in each row adding to one.

A homogeneous Markov chain is defined by having a
Markov kernel (i.e., transition matrix) that is equivalent for
every time step (i.e., Pt = P , where t = 1, 2, · · · ) on a finite
space X , with some initial distribution ν. The distribution of
states xεX at times t ≥ 0 is given by P (t)(x0, · · · , xt) =
ν(x0)P1(x0, x1) · · ·Pt(xt−1, xt). An ergodic (metrically tran-
sitive) Markov chain is defined by being both irreducible and
aperiodic as explained below. (The proofs for the following
lemmas are skipped for succinctness, but can be found in [15])

Lemma 1. The Markov chain representation of our FGA is
irreducible if and only if P (τy < ∞|x0 = x) > 0 for all
x, yεX assuming P 0(x0 = x) and τy is the minimum number
of steps to traverse from state x to y (i.e., the probability of
moving from one state to another in a finite number of steps
is positive).

Definition 1. The periodicity (dx) of a state x in
a Markov chain is defined by the expression dx =
gcd {n : Pr(xn = i|x0 = i) > 0} where gcd means “greatest
common divisor” (i.e., the periodicity is obtained by finding
the number of steps for all possible paths to exit and return
to a given state, then finding the largest number that can be
divided by all of them).

Lemma 2. A Markov chain is aperiodic when dx = 1 in Def. 1
for all states (i.e., every state contains a self-loop transition).
(Proof is in [15])

Lemma 3. The Markov chain representation of our FGA is
irreducible and aperiodic, hence ergodic. (Proof is in [15])

A. Convergence Analysis of a Metrically Transitive Homoge-
neous Finite Markov Chain

To prove the convergence of a homogeneous Markov chain,
the following measures are presented. The total variation be-
tween distributions in a given set is represented by ‖µ− ν‖ =∑
n |µ(x) − ν(x)|, for a finite set X with distributions µ

and ν on X . This measure is the basis for Dobrushin’s
contraction coefficient [16] that gives a rough measure of the
orthogonality between the distributions of a transition matrix.
This is expressed as c(P ) = 1

2 ·max︸︷︷︸
x,y

|P (x, ·)− P (y, ·)|, where

c is the contraction coefficient and P is a Markov kernel.
Simply stated, the contraction coefficient represents 1

2 the
greatest total variation of all combinations of rows in the
Markov kernel. When any two distributions of the Markov
kernel are completely disjoint c(P ) = 1. c(P ) = 0 when every

row in the Markov kernel P (x, ·) is equal. These measures are
used to make the following statements:

Lemma 4. Let P and Q be transition matrices and
let µ and ν be probability distributions : |µP − νP | ≤
c(P ) |µ− ν| , c(PQ) ≤ c(P )c(Q) ⇒ |µP − νP | ≤
|µ− ν| , |µP − νP | ≤ 2 · c(P ).

Proof: Proof is given by Winkler in [10].
Here, Winkler verifies that as distributions transition through

an ergodic system (Markov kernel) the orthoganality between
them decreases (assuming the distributions are not disjoint).

Lemma 5. For each step with the transition matrix P the
sequence (c(P t))t ≥ 0 decreases.

Proof: Using Lemma 4 as shown in [10]:

c(P t+1) ≤ c(P )c(P t) ≤ c(P t) (3)

Lemma 6. If the transition matrix, P is primitive, the se-
quence decreases to 0.

Proof: Using Lemma 5 as shown in [10]:

c(P t) ≤ (QkP t−τ ·k) ≤ c(Q)k · c(P t−τ ·k) ≤ c(Q)k (4)

where Q = P τ and τ is the minimum number of steps for
any state to reach any other state. Hence, Q is a simplified
Markov kernel where every state can reach every other state
in a single large step. k is the number of large steps such that
τ · k ≥ t. If P is primitive and hence Q is strictly positive
(i.e., all states are reachable) then c(Q) < 1 without equality
and c(P t) must go to zero as t goes to infinity [10].

Theorem 1. For a primitive transition matrix P on a finite
space with a stationary distribution µ, starting from any
distribution ν, νP t → µ as t→∞.

Proof: By Lemma 5, the sequence limt→∞c(P
t) = 0

and by Lemma 4∣∣νP t − µ∣∣ =
∣∣νP t − µP t∣∣ ≤ |ν − µ| c(P t) ≤ 2 · c(P t) (5)

Lemmas 5 and 6 demonstrate that as an ergodic Markov
chain progresses through each generation, it converges towards
a stationary distribution. This result is generalized for any
initial distribution in Theorem 1. Based on Theorem 1 we
assert that our FGA will converge to a stationary behavior:

Theorem 2. The transition matrix for the simplified FGA
is ergodic and therefore it will converge to a stationary
distribution.

Proof: (sketch) It is shown in [15] that the Markov kernel
for our FGA is irreducible, aperiodic and ergodic. Therefore,
using Theorem 1, it will converge to a stationary distribution.

Using this theorem we can state that our FGA will converge
to a stationary behavior. Also, experimentally we can find a



Fig. 2. Distribution of Markov chain for t → ∞ (N = 100)

Fig. 3. Final Distribution of Markov chain for t → ∞ (N = 100)

close approximation of the final stationary distribution of the
Markov chain for our distributed FGA. With this we can com-
pare the rate of convergence for various initial distributions of
the mobile nodes using our FGA as a software agent.

IV. CONVERGENCE EXPERIMENTS FOR OUR FGA

We implemented simulation software in Java to study the
effectiveness of our FGA for a uniform distribution of knowl-
edge sharing mobile nodes [3]. Eclipse SDK version 3.2.0
was used as the development environment, and Mason, a fast
discrete-event multi-agent simulation library core developed
by George Mason Universitys ECJLab, was used for the GUI
interface. The simulation software implementation has nearly
4,000 lines of algorithmic Java code. The user is able to assign
different values for the following parameters: (i) total number
of mobile nodes(N), (ii) communication range (Rcom), (iii)
maximum number of iterations (Tmax), (iv) mean number of
available links (N̄ ), (v) size of the geographical terrain (dmax),
vi initial node distribution, and (vii) number and position of
obstacles. We consider an experimental scenario where the
nodes enter an unknown geographical area without any prior
information and without a central control unit. Without loss
of generality, each node has the same limited communication
range (Rcom), and, hence, can only be aware of its neighbors
and runs its own GA-based software application.

For each experiment, the area of deployment is set to be

100x100 units with all nodes initially placed randomly in
the north-east corner of the terrain. We ran experiments for
networks with N = 100, N = 125 and N = 150 nodes and all
nodes with Rcom = 10. To reduce the noise in the outcomes,
each simulation experiment is repeated for 50 times with the
same initial values for node speed, Rcom, and direction, and
with the same initial node deployment.

Figs. 2 and 3 display the convergence characteristics of the
Markov kernel’s states for the experiments (where N = 100)
as the nodes perform our FGA. Fig. 2 shows that the system
evolves to a stationary distribution as t goes to infinity. It is
important to note that any initial distribution will converge to
the same stationary distribution. The only difference in using
varied initial distributions will be the number of steps that the
system takes to reach the stationary distribution. This makes
practical sense when considering the manner that the nodes are
initially deployed. If the mobile nodes are initially dispersed
such that they are close to uniform spatial distribution over
the geographical area, then they will take very few movements
achieve a uniform distribution. In the experiments, nodes are
placed in the worst case scenario where all of the mobile
agents are clustered in a single corner. In this case, many
mobile agents will initially be trapped between other mobile
agents and the boundaries of the geographical area. This will
increase the time required to reach spatial uniformity. The
importance of the relationship between initial distributions of
the Markov chain and the initial dispersement of mobile nodes
is that the Markovian representation of the FGA, accurately
represents experimental behavior.

Fig. 3 represents the possible outcome percentages of each
state in the Markov chain. The mobile agents in the ideal state
have the highest probability of 32% when time approaches
infinity. It proves that most of the mobile agents reach the
state where they have the desired number of neighbors and
location that results in minimal external force. The probability
of reaching a stop state with poor fitness and non-ideal number
of neighbors is 20%. The mobile nodes in this state may have
more neighbors than N̄ . The remaining states that are not
explicitly labeled with values ranging from 5% to 7% represent
states where the node is moving and has a ideal number of
neighbors. The final remaining states with values ranging from
1% to 2% represent the nodes that are moving with a non-ideal
number of neighbors. The final stationary distribution verifies
the experimental behavior of our FGA where mobile agents
achieve a distribution that is close to the uniform distribution.
Some nodes continue to move slightly, these nodes exert small
external forces on neighbors who in turn readjust themselves
to return to ideal fitness.

Fig. 4 shows Dobrushin’s contraction coefficient when time
goes to infinity for three different experiments with differing
numbers of nodes (N = 100, 125, and 150). The graph is only
based on the transition matrix for FGA and not on various
initial distributions of the Markov chain. This allows direct
comparisons to be made between experiments with varying
parameters. As seen Fig. 4, experiments with larger numbers of
nodes converge at a slower rate than experiments with smaller



Fig. 4. Contraction coefficients when t → ∞

numbers of nodes. This is due to the fact that more nodes
are initially trapped with limited mobility. As nodes at the
periphery of the cluster quickly begin to spread, the mobility
of nodes in the center of the cluster also begins to increase.
The Markov kernel for our FGA reaches the final distribution
when t ≈ 50 for all experiments. The convergence for varied
initial distributions can be added to this graph by finding
|νP t − µP t| with respect to t for any of the experimental
cases. It is important to note that the graph of this line with
all initial distributions (ν) will fall below the corresponding
graph of the contraction coefficient of the Markov kernel
as in the proof of Theorem 1. This statement also makes
practical sense since the convergence of the Markov kernel
shows the upper bound on the slowest convergence of the
FGA. Theoretically, this situation would be were all nodes are
located in the exact same position at a singe corner of the
geographic area. In practice, this scenario is impossible and the
worst case scenario is the one used in the experiment where all
nodes are randomly clustered in one corner of the geographical
area, but where none of the mobile agents are occupying
the same space. Conceptually, any scenario different than
the one just described would converge to a uniform spatial
distribution faster with an upper bound at the scenario where
all mobile agents are initially dispersed such that they all have
ideal fitness. This further verifies that the Markovian model
described section III-A is appropriate.

V. CONCLUDING REMARKS

We investigate the convergence of our FGA for self-
spreading nodes in MANETs. A Markov chain is introduced
to study the convergence of the FGA using contraction coeffi-
cients. Using our FGA for MANET nodes to position themselves
in an unknown geographical terrain to maximize the area
coverage and to provide a fully connected network, we show
that, our GA-based algorithm converges to a stationary be-
havior. The simulation experiment results in Sec. IV supports
the convergence of the algorithm. The effects of different
number of nodes on the convergence of our FGA are also
discussed. We observed that experiments with larger numbers
of nodes converge at a slower rate than experiments with
smaller numbers of nodes. This is due to the fact that more
nodes need more movement to reach the desired state.

As a next step of this research, we will include a detailed
convergence analysis of our FGA and the effects of different
network parameters including communication range and posi-
tion of initial node deployment.
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